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The ability to make rapid and accurate decisions based
on limited sensory information is a critical component of
visual cognition. Available evidence suggests that simple
perceptual discriminations are based on the
accumulation and integration of sensory evidence over
time. However, the memory system(s) mediating this
accumulation are unclear. One candidate system is
working memory (WM), which enables the temporary
maintenance of information in a readily accessible state.
Here, we show that individual variability in WM capacity
is strongly correlated with the speed of evidence
accumulation in speeded two-alternative forced choice
tasks. This relationship generalized across different
decision-making tasks, and could not be easily explained
by variability in general arousal or vigilance. Moreover,
we show that performing a difficult discrimination task
while maintaining a concurrent memory load has a
deleterious effect on the latter, suggesting that WM
storage and decision making are directly linked.

Introduction

Humans must frequently make rapid and accurate
decisions based on limited sensory information. Theo-
retical models of decision making—informed by
psychophysical (e.g., Brown & Heathcote, 2008; Link &
Heath, 1975; Ratcliff & McKoon, 2008; Usher &
McClelland, 2001) and neurophysiological (e.g., Purcell

et al., 2010; Shadlen & Newsome, 2001) experiments—
treat decision making as a problem of inference:
successive samples of (noisy) sensory evidence are used
to construct and update a ‘‘decision variable’’ that
represents the likely state of the world (Gold &
Shadlen, 2007). This process continues until an internal
response criterion is met, at which point sampling is
terminated and a response is issued. This sampling-to-
criterion process can be conceived of rather literally as
the accumulation of physical evidence (e.g., filling a
‘‘bucket’’ with evidence), or as a process of Bayesian
updating, where current sensory evidence is used to
compute a posterior probability, and that posterior
then serves as a prior for interpreting subsequent
sensory evidence (Wald, 1947). In either case, some
kind of storage buffer or workspace is needed to
represent and update the decision variable based on
incoming sensory information.

One candidate system is working memory (WM).
This system enables the storage of information in a
durable and readily accessible state for short periods
(on the order of seconds). Neurophysiological (e.g.,
Romo, Brody, Hernandez, & Lemus, 1999; Shadlen &
Newsome, 2001) and functional neuroimaging (Hee-
keren, Marrett, Bandettini, & Ungerleider, 2004)
studies suggest a great deal of overlap between cortical
regions engaged in WM storage and decision making,
particularly in regions of posterior parietal and frontal
cortex. For instance, Shadlen and Newsome (2001)
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recorded from neurons in the lateral intraparietal area
(LIP) while monkeys discriminated the global direction
(e.g., upward vs. downward) of a moving dot kineto-
gram by making a saccade to one of two peripheral
targets. Firing rates in neurons with receptive fields at
the chosen target increased gradually over the course of
each trial and reached a maximum immediately before
the saccade. Moreover, the rate at which firing rates
increased was monotonically related to the proportion
of upward or downward moving dots (i.e., the
‘‘strength’’ of the sensory evidence). These findings (see
Purcell et al., 2010, for related findings in macaque
frontal eye fields) suggest that these LIP neurons
represent the evolution of a decision variable over time.
However, many LIP (and frontal eye field) neurons also
demonstrate sustained increases in firing during de-
layed saccade tasks—a hallmark of WM storage. In
fact, many researchers interested in decision making
select neurons based on this property.

Although WM is critical for many forms of ‘‘online’’
cognitive processing, most researchers acknowledge
that this system is subject to a relatively small capacity
limit (see Luck & Vogel, 2013, for a recent review).
However, WM ability varies substantially across
individuals. If decision making depends in part on
WM, then one would predict that interindividual
variability in WM ability should limit the efficiency of
decision making. Here, we provide a test of this claim.
To anticipate our results, we find that individual
differences in WM capacity are correlated with the
efficiency of decision making in simple speeded
discrimination tasks (Experiments 1 and 2). Moreover,
we show that performing a difficult discrimination task
while maintaining a concurrent memory load has a
deleterious effect on the latter, suggesting that WM and
decision-making performance share a common re-
source (Experiment 3).

Experiment 1

Methods

Participants

Fifty-three undergraduate students from the Uni-
versity of California, San Diego (UCSD) participated
in a single 1.5-hr testing session in exchange for course
credit. All participants self-reported normal or cor-
rected-to-normal visual acuity, and all gave both
written and oral informed consent in accordance with
the Institutional Review Board at UCSD. Data from
seven participants were discarded due to chance-level
performance on our decision-making task. The data
reported here reflect the remaining 46 participants.

Stimuli and equipment

Stimuli were generated in MATLAB (MathWorks,
Natick, MA) and rendered on an 18-in. CRT monitor
(with a refresh rate of 60 Hz) via Psychophysics
Toolbox software (version 3; Brainard, 1997; Pelli,
1997). Participants were seated approximately 60 cm
from the display (head position was unconstrained) and
made responses via button presses or mouse clicks (see
Procedure).

Procedure

Each participant completed three tasks. Task order
was randomized across participants.
Color change detection: A representative trial is shown
in Figure 1A. Each trial began with the presentation of
four or eight colored squares for 100 ms (the ‘‘sample’’
array). Each square (subtending 1.448) was assigned a
random position within a 12 · 98 rectangle centered at
fixation, with the constraints that (a) items were equally
distributed across the two visual hemifields, and (b)
items were separated by a minimum of 2.088. Stimulus
colors were randomly chosen with replacement from a
set including green, yellow, blue, red, white, and black,
with the constraint that no color was used more than
twice. The sample array was followed by a 1000-ms
blank interval and a test display containing a single
square. Participants were asked to report whether the
color of this ‘‘probe’’ square matched the color of the
sample item at the same location via a keyboard
response (z ¼ ‘‘yes’’ and /¼ ‘‘no’’). Participants were
instructed to prioritize accuracy, and no response
deadline was imposed. Trials were separated by a 1000-
ms blank interval. Each participant completed three
blocks of 48 trials. Data were used to derive an estimate
of WM ‘‘capacity’’ (K) using an analytical approach
described by Cowan (2000):

K ¼ N
�
HRN � ð1� FANÞ

�
ð1Þ

where N is the number of sample items (i.e., ‘‘set size’’),
and HRN and FAN are the hit and false alarm rates for
displays containing N elements.
Motion recall: A representative trial is shown in Figure
1B. Each trial began with the presentation of four small
(radius¼ 1.98) kinetograms centered 7.078 to the upper
and lower left and right of fixation. Each kinetogram
contained 100 colored dots (each subtending 0.1258)
that moved along a randomly chosen axis (range 0–
3598) with 100% coherence for 1000 ms. The color of
the dots in each aperture was randomly chosen without
replacement from a set including green, red, blue,
yellow, purple, and black. This ‘‘sample’’ display was
followed by a 2000-ms blank interval. Participants were
then cued to recall the direction of a single kinetogram
by clicking on the circumference of a probe presented at
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one of the sample locations. The outer ring of the probe
aperture always matched the color of the dots in the
kinetogram originally rendered at the probe location;
this was done to minimize the occurrence of ‘‘transpo-
sition errors,’’ where participants occasionally report
the direction of a nonprobed item as the direction of
the probed item (see, e.g., Bays, Catalao, & Husain,
2009). Participants were instructed to prioritize accu-
racy, and no response deadline was imposed. Trials
were separated by a 500-ms interval, and each
participant completed three blocks of 50 trials.

To estimate WM capacity, we relied on an analytical
strategy developed by Zhang and Luck (2008). Each
trial of this task yields a single-point estimate of report
error (i.e., the circular distance between the reported
and correct directions). We assume that on some trials,
the participant successfully remembers the direction of
the probed stimulus (albeit imperfectly). On these trials,
his or her report errors should be normally distributed
around 08, with few high magnitude errors. This profile
can be captured by a von Mises distribution (the
circular analogue of a standard Gaussian distribution)
with mean l and concentration (or bandwidth)
parameter k. On other trials, however, the participant
will fail to remember the direction of the probed
stimulus (e.g., due to decay or capacity limits) and will
be forced to guess. Across many trials, these guesses
will manifest as a uniform distribution with range –
p : p and height nr. Critically, these two kinds of trials
will be mixed together in the data, so the empirically
observed distribution of response errors will resemble a
mixture distribution of the form:

pðxjl; k; nrÞ ¼ ð1� nrÞ e
kcosðx�lÞ

2pI0k
þ nr

2p
ð2Þ

where I0 is the modified Bessel function of the first kind
of order 0.

Maximum likelihood estimation (MLE) was used to
obtain estimates of u, k, and nr based on each
participant’s empirical distribution of response errors.
As described above, nr reflects the relative proportion
of trials where the participant failed to remember the
probed stimulus. Thus, one minus this value yields the
proportion of trials where the participant successfully
remembered the probed stimulus, and multiplying this
value by the number of sample items (in this case, 4)
yields an estimate of WM capacity.
Motion discrimination task: On each trial, participants
were shown a dynamic kinetogram containing 800
small (0.18) black dots. The kinetogram was presented
in a circular aperture centered at fixation (with inner
and outer radii of 0.758 and 88, respectively). Each dot
moved at a fixed speed of 68 per second and had a
lifetime of 83.33 ms (i.e., each dot, regardless of
location or trajectory, was randomly replotted every
83.33 ms in order to discourage participants from
foveating or tracking just one or two dots). On each
trial, a randomly selected 0%, 4%, 16%, or 32% of dots
moved leftward or rightward (i.e., 908 or 2708) while the
remaining dots were assigned random trajectories
(from 08 to 3598). Following earlier work, we refer to
the proportion of leftward or rightward moving dots as
stimulus ‘‘coherence.’’ Participants were required to
report the direction of coherent motion (i.e., rightward
or leftward) by pressing the appropriate arrow key on a
standard keyboard. Participants were instructed to
respond as quickly and accurately as possible, and the
trial terminated as soon as a response was made.
Coherence levels were mixed within blocks and
presented in an unpredictable order. Trials were

Figure 1. Behavioral tasks. Top row: color change detection. Bottom row: motion recall. Displays have been enlarged and rescaled for

exposition (see Methods).
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separated by a 500–1000 ms blank interval (the exact
interval was randomly chosen on each trial). Each
participant completed eight blocks of 64 trials.

Data from the motion discrimination task were
analyzed using a linear ballistic accumulator model
(LBA; Brown & Heathcote, 2008). We chose this model
because of its simplicity and computational tractability,
but all results generalized when we instead fit the data
with a drift diffusion model (see below). A schematic of
the LBA is shown in Figure 2. Briefly, this model
conceptualizes the decision-making process as a race
between N independent accumulators (one per response
alternative; here, leftward and rightward) towards a
response threshold. The first accumulator to reach
threshold determines the participant’s response, and
the time taken to reach threshold (plus an extra
constant time for sensory and motor processes)
determines the response latency. On each trial, each
accumulator is assigned a starting value on a uniform
interval [0,A]. During the trial, activity in each
accumulator increases linearly, and a response is made
as soon as one accumulator crosses a response
boundary (b). The time taken to reach this threshold—
plus a short nondecision time (for sensory and motor
responses) denoted t0—determines the response latency
on that trial. The rate at which each accumulator
approaches the response threshold is called that
accumulator’s ‘‘drift rate’’ (v). Importantly, drift rates
are determined by the relative quality of sensory
information present in the display. For example, if a
display contains 80% coherent rightward motion, then

the ‘‘rightward’’ and ‘‘leftward’’ accumulators shown in
Figure 3 will be assigned large and small values,
respectively. Drift rates are drawn (on a trial-by-trial
basis) from independent normal distributions with
means v1, v2, . . . vn and standard deviation s (here fixed
at constant value of 1). The drift rate parameter
estimated by the model is the mean drift rate for a given
accumulator and difficulty condition across all trials.

Our implementation of the LBA contains a total of
four parameters: A (the range of starting points for
each accumulator), b (the response threshold), t0
(nondecision time), and v (drift rate). Because motion
coherence levels were randomly and unpredictably
mixed across trials, we had little a priori reason to
suspect that LBA parameters other than drift rate
would vary with stimulus strength. Thus, we fixed these
values across conditions. In addition, a model that
allowed all four parameters to vary was found to be less
parsimonious than a model that allowed only drift rate
to vary. Specifically, the Bayesian information criterion
(BIC; Schwarz, 1978) for the reduced model was 31.37
6 12.82 units smaller than the criterion for the full
model (given a finite set of models, the alternative with
the smallest BIC is preferred; see Schwarz, 1978). Thus,
we used the simpler model for all analyses.

We also analyzed participants’ motion discrimina-
tion performance using a variant of Ratcliff’s (1978)
‘‘drift diffusion model’’ (DDM; specifically, the Diffu-
sion Model Analysis Toolbox [DMAT] implementation
developed by Vandekerckhove & Tuerlinckx, 2008;
available for download at: http://ppw.kuleuven.be/
okp/software/dmat/). In this model, sensory evidence is
represented by a single accumulator that drifts towards
an upper or lower response boundary (where each
boundary corresponds to a unique response alterna-
tive). Unlike the LBA, the DDM permits stochastic
changes in the step size and direction of the accumu-
lator per unit time. However, this flexibility can also be
a disadvantage: fitting times are typically much longer
than the LBA. Nevertheless, the DDM captures many
benchmark phenomena in speeded two-alternative,
forced choice (2AFC) tasks, and thus we expected a
correlation between memory capacity and drift rates
estimated using this model as well.

Results and discussion

Data from the color change detection and motion
recall tasks were used to obtain estimates of WM
capacity using standard approaches (see Methods).
Capacity estimates for the color change detection (set
size 8) and motion recall tasks were strongly correlated
(r¼ 0.59, p , 0.001; correlations of similar magnitude
have also been reported elsewhere; see e.g., Zhang &
Luck, 2008), so estimates were pooled and averaged

Figure 2. Schematic representation of the LBA. Each evidence

accumulator (one per response alternative) is assigned a

starting point on a uniform interval [0,A]. Activity in each

accumulator increases until one crosses a response threshold

(b). The ‘‘winning’’ accumulator determines the behavioral

response, and response latencies are simply the time it takes

the winning accumulator to reach threshold (plus an extra

constant nondecision time, denoted t0). The rate at which each

accumulator approaches threshold is termed that accumulator’s

‘‘drift rate’’ (v).
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across tasks. However, all results reported here
generalized when we considered these tasks separately
(see below).

Mean composite memory capacity was 2.61 (61
SEM¼ 0.14), with a range of 0.58 to 4.30 items. Mean
response times and accuracy from the motion discrim-
ination task are shown in Table 1. As expected,
accuracy increased (and response latency decreased)
monotonically with increases in stimulus coherence.
Next, the LBA was used to estimate drift rates for
accumulators matching and mismatching the direction
of motion presented on each trial (hereafter referred to
as the ‘‘correct’’ and ‘‘error’’ accumulators, with
corresponding drift rates denoted vc and ve). These
values are listed in Table 2. In the absence of sensory
evidence (i.e., 0% coherence) estimates of vc and ve
were statistically indistinguishable, t(45) ¼ 1.27, p¼
0.21. However, estimates of vc and ve increased and
decreased (respectively) monotonically with increases in
motion coherence. Next, we computed a measure of
decision ‘‘efficiency’’ for each participant by subtracting
estimates of ve from vc (separately for each coherence
level). These values are plotted as a function of memory
capacity in Figure 3. Robust positive correlations were
observed during 4% coherence (r¼ 0.42, p , 0.01, 95%

CI ¼ 0.15–0.63), 16% coherence (r¼ 0.47, p , 0.001,
95% CI¼ 0.21–0.67), and 32% coherence (r¼ 0.48, p ,
0.001, 95% CI ¼ 0.22–0.68) trials, but not during 0%
coherence trials (where there is no ‘‘evidence’’ to
accumulate; r¼ 0.06, p¼ 0.69, 95% CI ¼�0.23–0.34).
Qualitatively similar results were obtained when
memory capacity was defined using only change
detection performance (averaged across set sizes 4 and
8; r ¼ 0.22, 0.39, 0.40, and 0.41 for the 0%, 4%, 16%,
and 32% coherence conditions, respectively; p ¼ 0.14
for the 0% condition, p , 0.05 for the remaining
conditions) or motion recall performance (r¼�0.04,
0.39, 0.50, and 0.55 for the 0%, 4%, 16%, and 32%
coherence conditions, respectively; p . 0.4 for the 0%
conditions, p , 0.05 for the remaining conditions)
Qualitatively identical findings were also obtained
when we plotted estimates of vc as a function of
memory capacity, indicating that these findings are not
idiosyncratic to our ad hoc ‘‘efficiency’’ measure.

Several studies (e.g., Ackerman, Beier, & Boyle,
2002; Kyllonen & Christal, 1990) have documented
moderately strong positive correlations between WM
ability and measures of ‘‘perceptual’’ or ‘‘processing
speed’’ (e.g., how quickly an observer can encode or
respond to a stimulus, or how quickly an observer can

Figure 3. Drift rates are robustly correlated with estimates of WM capacity. Motion coherence indicated by bold number in top right

of each panel.

0% 4% 16% 32%

Accuracy 0.49 (0.01) 0.65 (0.01) 0.88 (0.02) 0.93 (0.02)

Latency (s) 1.59 (0.07) 1.44 (0.07) 1.07 (0.07) 0.91 (0.06)

Table 1. Mean (61 SEM) accuracy and response latency in the motion discrimination task of Experiment 1.
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compare two stimuli). One possibility is that the
correlations shown in Figure 3 reflect this well-known
link. Alternately, the correlations could simply reflect
the fact that some subjects tried harder on the WM and
perceptual decision making (PDM) tasks, and that
differences in this type of ‘‘general effort’’ explain the
correlations. By either account, one might also expect
individual differences in WM capacity to correlate with
mean response latencies. However, no correlations
between capacity and mean response times (RTs) were
found (r , 0.15 for all four coherence levels, all ps .
0.32). Thus, it seems unlikely that the correlations
shown in Figure 3 can be explained solely by assuming
that high-capacity individuals were simply faster at
responding or simply tried harder. Instead, high
capacity subjects seem to be more efficient at accumu-
lating sensory evidence, which is computed based on a
combination of RT and accuracy in the PDM task (as
indexed by the LBA). However, the issue of the
relationship between ‘‘general effort’’ accounts and
correlations of performance on different tasks is
complex and nuanced, and we return to this issue in the
General discussion.

On a related point, we emphasize that generic
response latency measures reflect the total time from
stimulus onset to response execution, and that total
time is comprised of many cognitive operations. The
purpose of the LBA (and related models of speeded
2AFC performance) is to estimate a set of latent
variables thought to determine overall response latency
(i.e., the amount of evidence needed to reach a decision
criterion, the rate at which evidence is ‘‘accumulated,’’
etc.). There are many reasons why a given participant
might respond more slowly (or quickly) in the PDM
task relative to others. For example, two participants
might sample evidence at an equivalent rate, but one
might have a conservative response threshold (i.e., he
or she might require a lot of sensory evidence before
committing to a decision). Alternately, these partici-
pants might have comparable thresholds, but vary in
how quickly they are able to sample or accumulate
information (i.e., drift rates). By decomposing overall
response latency (and accuracy) measures into latent
variables, one can evaluate the selective relationship(s)
between each latent parameter and WM ability. Here,
we found that evidence accumulation rates—but not
raw response latencies or other LBA parameters—
correlated with WM ability, suggesting that these
processes draw upon a common resource.

Finally, we also examined whether correlations
between drift rate and WM capacity were idiosyncratic
to the LBA. To do so, we reanalyzed data from the
motion discrimination task using a drift diffusion
model (specifically, the DMAT implementation devel-
oped by Vandekerckhove & Tuerlinckx, 2008; see
Methods). Estimates of drift rate returned by this
model were also positively correlated with WM
capacity for the 16% and 32% coherence levels (r ¼
�0.16, 0.13, 0.30, and 0.37 for 0%, 4%, 16%, and 32%
coherence trials, respectively; p , 0.05 for 16%–32%
trials).

Experiment 2

In Experiment 2, we examined whether putative
correlations between memory capacity and drift rate
would generalize to a different decision-making task
(speeded letter discrimination).

Methods

Participants

Sixteen undergraduate students from the University
of California, San Diego, completed a single one-hour
testing session in exchange for course credit. All
participants self-reported normal or corrected-to-nor-
mal visual acuity, and all gave both written and oral
informed consent in accordance with the Institutional
Review Board at UCSD.

Stimuli and apparatus

As in Experiment 1, stimuli were generated in
MATLAB (MathWorks) and rendered on an 18-in.
CRT monitor (with a refresh rate of 60 Hz) via
Psychophysics Toolbox software (Brainard, 1997; Pelli,
1997). Participants were seated approximately 60 cm
from the display (head position was unconstrained) and
made responses via a standard keyboard.

Procedure

On each trial, two ‘‘reference’’ letters (subtending
approximately 0.868 · 1.248 in 36-point Arial font)
were rendered 2.58 above and 648 to the left and right

0% 4% 16% 32%

vc 0.82 (0.06) 1.17 (0.07) 2.27 (0.13) 2.87 (0.16)

ve 0.85 (0.06) 0.50 (0.06) �0.60 (0.13) �1.21 (0.16)

Difference (vc – ve) �0.03 (0.02) 0.67 (0.07) 2.87 (0.24) 4.08 (0.30)

Table 2. Mean (61 SEM) estimates of vc and ve returned by the LBA model.
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of fixation. Following a random blank interval (400–
700 ms, randomly chosen from a uniform distribution
on each trial) a target letter matching one of the
reference letters was displayed 2.58 directly above
fixation for 16.67, 33.33, 50, 67.67, 83.33, or 100 ms
then masked with an ‘‘X’’ for 500 ms. A probe ‘‘?’’ was
then presented for a maximum of 900 ms. Participants
were instructed to indicate which reference letter the
target matched as quickly and as accurately as possible,
pressing the ‘‘Z’’ key with their left hand to indicate the
left letter and the ‘‘/’’ key with their right hand to
indicate the right letter. Trials were aborted if no
response was issued within 1500 ms, and a warning
message encouraged participants to respond more
quickly if the response time on a given trial was � 1000
ms. Trials were separated by a 700–1200 ms interval
(randomly chosen from a uniform distribution on each
trial). Reference letters were drawn from sets including
[E,C], [C,P], and [C,F]. The letter pairs, as well as their
positions on the screen (i.e., which letter was assigned
to the left vs. right side of the screen) were randomly
chosen at the start of each block. Each participant
completed 18 blocks of 48 trials.

Results and discussion

Mean response latencies and accuracy are listed as a
function of cue-target stimulus onset asynchrony
(SOA) in Table 3. As expected, accuracy increased
monotonically with SOA, though response latencies
were largely unchanged. Accuracy and latency data
were then modeled with the LBA. As in Experiment 1,
we defined a measure of decision-making efficiency by
computing the differences between estimates of vc and
ve returned by the model (separately for each SOA).
These are plotted as a function of memory capacity
(obtained using the same color change detection task
that was employed in Experiment 1) in Figure 4.
Significant positive correlations between WM capacity
and decision efficiency were observed for 67.67, 83.33,
and 100 ms letter exposure durations (r¼ 0.53, 0.53,
0.56, respectively, p , 0.05), but not for 16.67, 33.33,
and 50 ms exposure durations (r¼ 0.20, 0.12, and 0.07,
respectively, p . 0.40). Precisely why significant
correlations only manifest at longer SOAs is unclear.
Nevertheless, the results of this experiment suggest that
links between WM capacity and decision efficiency are
not idiosyncratic to the motion discrimination task
used in Experiment 1.

Experiment 3

In Experiment 3, we asked whether there was a
causal relationship between WM capacity and drift
rates. To evaluate this possibility, a new group of
participants completed an experiment in which they
performed (in randomized order) a color change
detection task, a motion discrimination task, or a ‘‘dual
task’’ that required participants to make speeded
motion direction discriminations while maintaining a
concurrent memory load. If decision making draws
upon the same mnemonic resources that support WM,
then participants’ performance on a WM task should
suffer when they are required to make a perceptual
discrimination during the WM retention interval.

Methods

Participants

Thirty-two undergraduate students from the Uni-
versity of California, San Diego, completed a single 1.5-
hr testing session in exchange for course credit. All
participants reported normal or corrected-to-normal
visual acuity, and all gave both written and oral
informed consent in accordance with the Institutional
Review Board at UCSD.

Stimuli and apparatus

As in Experiments 1 and 2, stimuli were generated in
MATLAB (MathWorks) and rendered on an 18-in.
CRT monitor (refreshing at a rate of 60 Hz) via
Psychophysics Toolbox software (Brainard, 1997; Pelli,
1997). Participants were seated approximately 60 cm
from the display (head position was unconstrained) and
made responses via a standard keyboard.

Procedure

Color change detection: On each trial, participants were
presented with two or six colored squares (randomly
selected without replacement from a set including red,
green, blue, black, white, yellow, and violet) for 100 ms.
Each square subtended 38 and was presented at one of
six possible locations (08 : 3008 in 608 increments) on
the perimeter of an imaginary circle (radius¼ 68)
centered at fixation. After a 1000 ms blank interval, a
0% coherent kinetogram (inner and outer radii of 0.758

16.67 ms 33.33 ms 50 ms 67.67 ms 83.33 ms 100 ms

Accuracy 0.76 (0.02) 0.82 (0.02) 0.88 (0.02) 0.93 (0.01) 0.94 (0.01) 0.95 (0.02)

Latency (s) 0.58 (0.01) 0.56 (0.01) 0.55 (0.01) 0.54 (0.01) 0.54 (0.02) 0.55 (0.01)

Table 3. Mean (61 SEM) accuracy and response latency in the letter discrimination task of Experiment 2.
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and 88, respectively) containing 800 dots (each 0.18)
moving at 48/s (with a limited lifetime of 100 ms) was
presented for 3000 ms. Participants were told that this
stimulus was irrelevant and to focus on remembering
the colors of the squares presented at the beginning of
the trial. The kinetogram was followed by another 1000
ms interval and the presentation of a test array. Here, a
single square replaced one of the sample items, and
participants reported whether the color of this new
square matched the color of the item in the same
location at the start of the trial (pressing ‘‘Z’’ to indicate
‘‘yes,’’ and ‘‘/’’ to indicate ‘‘no’’). Participants were
instructed to prioritize accuracy, and no response
deadline was imposed. Each participant completed two
blocks of 48 trials in this task.
Motion discrimination: On each single-task motion
discrimination trial, participants were shown two or six
white squares for 100 ms. Participants were explicitly
told to ignore these stimuli. After a 1000 ms blank
interval, a kinetogram was rendered for 3000 ms. On
each trial, 8% of 24% of the dots in the kinetogram
moved towards the left or right side of the stream;
participants were asked to report the direction of
coherent motion as quickly and accurately as possible

(pressing ‘‘Z’’ for left and ‘‘/’’ for right). The kineto-
gram was followed by a 1000 ms blank interval and the
presentation of a ‘‘probe’’ array containing a single
white square. No response to this display was required;
participants simply pressed the spacebar when they
were ready to begin the next trial.
Dual task: This procedure combined aspects of the
color change detection and motion discrimination
tasks. Specifically, participants were required to dis-
criminate the direction of an 8% or 24% coherent
moving dot stimulus while remembering the colors of
two or six squares. As in the primary tasks, participants
pressed the ‘‘Z’’ and ‘‘/’’ keys to indicate leftward and
rightward motion during the motion discrimination
period, and used the same keys to indicate ‘‘same’’ vs.
‘‘different’’ (respectively) upon presentation of the color
square probe.

Results

A 2 (single vs. dual task) by 2 (motion coherence:
8% vs. 24%) repeated measures ANOVA on drift rates
obtained from the motion discrimination tasks re-

Figure 4. Results of the letter discrimination task. Panels A–F plot the correlation between memory capacity and drift rates for letter

exposure durations of 16.67, 33.33, 50, 67.67, 83.33, and 100 ms, respectively.
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vealed a main effect of coherence, F(1, 31)¼ 149.41, p
, 0.001, g2partial¼0.29, but no main effect of task type
nor an interaction between these factors (both Fs , 1;
see Figure 5A). Conversely, a 2 (single vs. dual task)
by 2 (set size: 2 or 6 items) repeated measures ANOVA
on WM capacity estimates revealed a main effect of
task type, F(1, 31)¼55.72, p , 0.001, g2 partial¼0.16, a
main effect of set size, F(1, 31) ¼ 70.29, p , 0.001, g2

partial ¼ 0.20, and a significant interaction between
these factors, F(1, 31) ¼ 38.08, p , 0.001, g2 partial ¼
0.07. During set size 2 trials, WM capacity decreased
by an average of 0.31 (60.06) items (M¼1.89 and 1.57
for single- and dual-task trials, respectively). This cost
increased to 1.36 (60.19) items during set size 6 trials
(M ¼ 3.37 vs. 2.02; see Figure 5B). Note also that
performance on the motion discrimination task was
equivalent for single- and dual-tasks. This suggests
that dual task costs on memory performance were not
driven by ‘‘state-level’’ factors (e.g., changes in
alertness or anxiety) that should have a negative effect
on performance in both tasks. Thus, performing a task
that required evidence accumulation interfered with
concurrent WM storage.

Discussion

Here, we show that an interleaved decision-making
task interferes with performance on a concurrent WM
task, presumably because decision making draws on the
same pool of mnemonic resources that support WM.
However, it should be noted that there are many other
‘‘resource independent’’ factors that could account for
these effect (see, e.g., Navon, 1984; Duncan, 1980).
That said, our data do argue against one uninteresting
account of this interference; namely, that subjects may
have been more anxious or less motivated during the
dual-task relative to single-task conditions (e.g., be-
cause of an increase in difficulty). Presumably, any such
‘‘state-level’’ factors would reduce performance on both
tasks in the dual-task condition relative to the single-
task condition (though the effects might be smaller in
the task assigned the highest priority). However, the
observation of a selective impairment on the WM task
in the dual-task condition speaks against these types of
general accounts.

In addition, we did not have a strong a prioi reason
to predict that dual-task costs would show up just in
the WM task as opposed to the interleaved decision
task. One possibility is that participants chose to
prioritize the decision task because it required a
speeded response. However, participants could have
presumably been made to place greater priority on the
WM task (e.g., via altered instructions or a directed
reward scheme), and this may well have pushed the
dual-task costs to the decision-making task. Alter-

nately, it may be that the second task (or last, assuming
a situation where a subject performs more than two
tasks) is automatically prioritized. While these possi-
bilities cannot be directly addressed with the present
data, our main goal was simply to present direct
evidence that the WM and PDM tasks draw upon a
common set of ‘‘resources,’’ and this notion is
supported by the demonstration of the selective deficit
in the WM task in the dual-task condition. Thus, even
though the direction of the effect might have gone the
other way had we differentially prioritized the tasks,
the observation of selective interference in one task
(WM task) in the dual-task condition argues against
the notion of independent WM and PDM resources.

General discussion

Here, we present data suggesting that individual
variability in WM capacity is correlated with decision-
making ability. This relationship generalized across
different tasks and different models of decision making
and cannot be easily explained by variability in general
arousal or vigilance. Moreover, we show that per-

Figure 5. Performing a motion discrimination task interferes

with WM storage. (A) Drift rates estimated from accuracy and

response latency in a motion discrimination task are plotted as

a function of stimulus coherence (8% or 24%), and whether the

task was performed alone (‘‘single task’’) or while maintaining a

concurrent memory load (‘‘dual task’’). The latter factor had no

influence on performance. (B) Estimates of WM capacity

obtained in a color change detection task are plotted as a

function of set size (2 vs. 6 items) and the task type (single vs.

dual). Performing a concurrent motion discrimination task that

requires the integration of sensory evidence had a deleterious

impact on performance. Error bars reflect 61 SEM across

subjects.
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forming a difficult discrimination task while maintain-
ing a concurrent memory load has a deleterious effect
on the latter, suggesting that WM storage and evidence
accumulation share a common resource.

In the current study, we quantized WM capacity as a
small number of discrete (i.e., independent) ‘‘slots,’’
each capable of storing a single object or ‘‘unit’’ of
information (Luck & Vogel, 2013). However, an
alternative view proposes that capacity limits are
instead determined by a limited resource that can be
flexibly allocated to a variable number of items (e.g.,
Bays et al., 2009; van den Berg, Shin, Chou, George, &
Ma, 2012). We take no position on this debate here, but
note that one would predict a correlation between WM
and decision-making performance regardless of how
mnemonic resources are quantized.

On a related point, there is some ambiguity as to
what factor(s) mediate the observed links between WM
ability and decision making? One possibility is that
‘‘high capacity’’ individuals have a larger pool of
mnemonic ‘‘resources’’ (relative to ‘‘low capacity’’
individuals) that can be deployed in the service of
decision making. Alternately, ‘‘high’’ and ‘‘low’’ ca-
pacity individuals may differ in how efficiently they
deploy these resources. The latter alternative is
supported by a growing literature suggesting that
individual differences in working memory capacity
reflect variability in attentional control rather than the
amount of ‘‘storage space’’ an individual possesses (e.g.,
Kane & Engle, 2003; McNab & Klingberg, 2008;
Vogel, McCollough, & Machizawa, 2005). Additional
work aimed at determining whether the present
correlations are best explained by actual capacity
differences or by differences in attention control will
provide key insights into the mechanistic link between
WM ability and decision-making efficiency.

The correlations between WM ability and decision-
making ability reported here can be explained in at
least two different ways. Specifically, one possibility is
that both WM and decision making draw upon a
general pool of resources that are also recruited by
other demanding visual tasks. Alternately, WM and
decision making might draw upon a shared pool of
resources that are separate from those used to solve
other demanding tasks. Unfortunately, the data re-
ported here offer little that discriminates between these
alternatives. On the one hand, all tasks may depend on
a common pool of resources at some level of
processing. For example, two tasks requiring the same
motor output should engage a common resource that
represents the shared response mappings. However, in
less trivial cases there is at least some evidence arguing
against entirely domain-general cognitive resources.
For example, there is evidence suggesting that separate
resource pools mediate the storage of spatial versus
object information in WM (e.g., Courtney, Unger-

leider, Keil, & Haxby, 1996; Della Sala, Gray,
Baddeley, Allamano, & Wilson, 1999; Smith, Jonides,
& Koeppe, 1996). That said, the data reported here
cannot definitively exclude the possibility that WM and
PDM draw upon a domain-general set of cognitive
resources shared by other (perhaps all) visual tasks.
Future work will need to explore this possibility in
greater detail by identifying tasks that selectively
interfere/do not interfere with both decision making
and WM.

A recent study by Schmiedek, Oberauer, Wilhelm,
Süss, and Wittman (2007) also reported positive
correlations between WM ability (measured via com-
plex span tasks) and drift rates. Other work has
documented positive correlations between drift rates
and intelligence (e.g., van Ravenzwaaij, Brown, &
Wagenmakers, 2011), as well as between working
memory and intelligence (e.g., Engle, Tuholski,
Laughlin, & Conway, 1999). However, clear theoretical
explanations for these correlations are lacking. For
example, Schmiedek et al. (2007) proposed that links
between WM, decision making, and reasoning ability
reflect variability in the ability to maintain ad hoc
bindings between stimulus–response mappings. Con-
versely, Kane and colleagues (McVay & Kane, 2012)
proposed that these correlations reflect variability in
the frequency of attentional lapses. Here, we offer a
third alternative: evidence accumulation and WM are
linked because both processes draw on the same pool of
limited resources. This hypothesis is motivated in part
by clear parallels between the neural mechanisms
supporting WM and decision making. For example,
responses of neurons located in early visual cortex are
thought to provide the input to neurons in posterior
parietal and frontal cortex that undergo a ‘‘ramp-like’’
increase in activity during decision making (e.g., Gold
& Shadlen, 2007), and recent evidence suggests that
sustained population-level responses in the same
regions of early visual cortex support WM representa-
tions (Ester, Anderson, Serences, & Awh, 2013;
Harrison & Tong, 2009; Serences, Ester, Vogel, & Awh,
2009). Thus, the quality of sensory representations in
these visual areas may set an upper bound on the
efficacy of both WM and perceptual decision making.
Alternatively, the ramp-like accumulation of sensory
evidence in parietal and frontal cortex may be
tantamount to the formation of a stable WM repre-
sentation that can guide behavior. On this account, the
common thread between WM and decision making
may not be the quality of sensory representations per
se, but rather the efficiency with which sensory
information is utilized by downstream accumulation
mechanisms. We emphasize that these accounts are
speculative, and they need not be mutually exclusive.
Clearly, further research is needed to delineate putative
links between mechanisms of WM and decision

Journal of Vision (2014) 14(4):2, 1–12 Ester, Ho, Brown, & Serences 10



making. Nevertheless, our results raise the intriguing
possibility that the storage of information in WM and
the accumulation of sensory evidence reflect the
operation of a common capacity-limited mechanism.

Keywords: visual memory, decision making, individual
differences
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